Schița de curs
Understanding AI and Machine Learning
- What is AI and how is it defined?
- Machine Learning as a subset of AI
- Types of AI: weak, strong, generative, supervised, unsupervised
AI in Practice Across the Organization
- Where AI/ML currently exists in business functions
- Automation, decision support, customer service, and analytics
- Use cases in HR, finance, operations, and compliance
Common Governance Challenges
- Conflicts with the Data Protection Principles
- Lawfulness, fairness, and transparency in automated decision-making
- Accuracy, data minimization, and storage limitations
Foundations in Information and Data Management
- Information and records management in AI contexts
- The importance of metadata and audit trails
- Maintaining data quality and integrity for training datasets
Approaching Information Governance Challenges
- Designing governance controls for AI/ML pipelines
- Human oversight and explainability
- Building cross-functional governance teams
Conducting DPIAs for AI/ML
- Legal requirement and purpose of DPIAs
- Steps to assess proposed AI/ML implementations
- Documenting risk assessments, mitigations, and justifications
Governance Frameworks and Risk Management
- Overview of AI-specific governance frameworks
- ISO, NIST, ICO, and OECD approaches
- Risk registers and policy documentation
Culture, Integration, and Related Frameworks
- Embedding a culture of responsible AI use
- Linking AI governance with cybersecurity, ethics, and ESG policies
- Continuous improvement and monitoring
Summary and Next Steps
Cerințe
- An understanding of organizational information governance policies
- Familiarity with data protection or privacy regulations
- Some exposure to AI or machine learning concepts is helpful
Audience
- Information governance professionals
- Data protection officers and compliance managers
- Digital transformation or IT governance leads
Mărturii (2)
ecosistemul ML nu se limitează la MLFlow ci include și Optuna, hyperops, docker, docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Curs - MLflow
Tradus de catre o masina
Am apreciat participarea la antrenamentul Kubeflow, care s-a desfășurat în mod remote. Acest antrenament m-a permis să consolidez cunoștințele despre serviciile AWS, K8s și toolele devOps din jurul Kubeflow, care sunt bazele necesare pentru a aborda subiectul în mod corespunzător. Doresc să-i mulțumesc lui Malawski Marcin pentru paciența și profesionalismul arătat în antrenament și în oferirea de sfaturi privind cele mai bune practici. Malawski abordează subiectul din diferite perspective, folosind diverse instrumente de dezvoltare Ansible, EKS kubectl, Terraform. Acum sunt cu siguranță convins că mă îndrept către domeniul potrivit de aplicare.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Curs - Kubeflow
Tradus de catre o masina