Schița de curs
Introducere în aplicație Machine Learning
- Învățare statistică vs. învățare automată
- Iterație și evaluare
- Compensație părtinire-varianță
Machine Learning cu Scala
- Alegerea bibliotecilor
- Instrumente suplimentare
Regresia
- Regresie liniara
- Generalizări și neliniaritate
- Exerciții
Clasificare
- Reîmprospătare bayesiană
- Bayes naiv
- Regresie logistică
- K-Cei mai apropiați vecini
- Exerciții
Validare încrucișată și reeșantionare
- Abordări de validare încrucișată
- Bootstrap
- Exerciții
Învățare nesupravegheată
- K înseamnă grupare
- Exemple
- Provocări ale învățării nesupravegheate și dincolo de K-means
Cerințe
Cunoașterea limbajului de programare Java/Scala. Se recomandă cunoștințe de bază de statistică și algebră liniară.
Mărturii (2)
ecosistemul ML nu se limitează la MLFlow ci include și Optuna, hyperops, docker, docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Curs - MLflow
Tradus de catre o masina
Am apreciat participarea la antrenamentul Kubeflow, care s-a desfășurat în mod remote. Acest antrenament m-a permis să consolidez cunoștințele despre serviciile AWS, K8s și toolele devOps din jurul Kubeflow, care sunt bazele necesare pentru a aborda subiectul în mod corespunzător. Doresc să-i mulțumesc lui Malawski Marcin pentru paciența și profesionalismul arătat în antrenament și în oferirea de sfaturi privind cele mai bune practici. Malawski abordează subiectul din diferite perspective, folosind diverse instrumente de dezvoltare Ansible, EKS kubectl, Terraform. Acum sunt cu siguranță convins că mă îndrept către domeniul potrivit de aplicare.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Curs - Kubeflow
Tradus de catre o masina