Schița de curs
Python Fundamentals for Data Tasks
- Installing Python and setting up the development environment
- Language fundamentals: variables, data types, control structures
- Writing and running simple Python scripts
File Handling: CSV and Excel
- Reading and writing CSV files using the csv module and Pandas
- Working with Excel files using openpyxl/xlrd and Pandas
- Practical exercises: automating file conversions
Introduction to Pandas
- DataFrame basics: creation, indexing, selection, and filtering
- Aggregation and grouping operations
- Common cleaning operations: missing values, duplicates, and type conversions
Introduction to Polars
- Polars concepts and performance characteristics compared to Pandas
- Basic DataFrame operations in Polars
- Use-case example: when to choose Polars over Pandas
Advanced Data Transformation (Intermediate)
- Complex joins, window functions, and pivot operations in Pandas
- Efficient data processing patterns with Polars
- Chaining operations and optimizing memory usage
Process Automation with Python
- Writing scripts to automate repetitive data tasks and ETL steps
- Scheduling scripts with OS schedulers or task schedulers
- Logging, error handling, and notifications
Packaging Scripts and Best Practices
- Creating executables with PyInstaller or similar tools
- Project structuring, virtual environments, and dependency management
- Version control basics and documenting workflows
Hands-on Mini-Project
- End-to-end task: read raw files, clean and transform data, produce outputs
- Automate the workflow and package as a runnable script or executable
- Review and improvements based on peer feedback
Summary and Next Steps
Cerințe
- Basic familiarity with programming concepts or willingness to learn
- Comfort using command-line or terminal for package installation
- Experience working with spreadsheets (CSV/Excel)
Audience
- Data analysts and operations staff automating data tasks
- Analytical engineers seeking lightweight ETL scripting
- Professionals interested in practical Python-based data workflows
Mărturii (5)
Faptul de a avea mai multe exerciții practice folosind date mai asemănătoare cu cele pe care le folosim în proiectele noastre (imagini satelitare în format raster)
Matthieu - CS Group
Curs - Scaling Data Analysis with Python and Dask
Tradus de catre o masina
Am considerat că antrenatorul era foarte cunoscutitor și a răspuns la întrebări cu încredere pentru a clarifica înțelegerea.
Jenna - TCMT
Curs - Machine Learning with Python – 2 Days
Tradus de catre o masina
Pregătirea și experțiza foarte bune a formatorului, comunicare perfectă în engleză. Cursul a fost practic (exerciții + împărtășire de exemple de cazuri de utilizare)
Monika - Procter & Gamble Polska Sp. z o.o.
Curs - Developing APIs with Python and FastAPI
Tradus de catre o masina
Explicația
Wei Yang Teo - Ministry of Defence, Singapore
Curs - Machine Learning with Python – 4 Days
Tradus de catre o masina
Formatorul dezvoltă formarea în funcție de ritmul participanților
Farris Chua
Curs - Data Analysis in Python using Pandas and Numpy
Tradus de catre o masina